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PROPAGATION OF REVERSIBLE DEFORMATION IN A MEDIUM

WITH ACCUMULATED IRREVERSIBLE STRAINS

UDC 3:534.1A. A. Burenin, O. V. Dudko, and A. A. Mantsybora

The paper studies the effect of previously accumulated plastic strains on the conditions of existence
and propagation of the discontinuity surfaces of elastic strains arising from subsequent shock loading.
It is shown that the anisotropy of properties of the medium due to the presence of previous irreversible
strains influences the propagation of repeated boundary perturbations in an elastoplastic medium.
Plane shock waves propagating in a one-dimensional, uniformly deformed medium are considered in
detail. Solutions are given of the problem of instantaneous loading and unloading of an elastoplastic
half-space with irreversible strains.

Introduction. The existence of a free state is one of the main hypotheses used in modeling the deformation
of materials. In this case, the strains are reckoned from a certain state in which they are set equal to zero. Stresses
in the free state are also considered zero. Because of the various heterogeneities intrinsic to real materials, the free
state in them practically does not occur. In the processes of pretreatment and manufacture of articles (rolling,
forming), materials can acquire considerable irreversible strains. Such strains can be caused by residual stresses,
which are not completely eliminated by annealing and quenching. Therefore, the accumulated irreversible strains can
influence subsequent deformation, in particular, the nature of distribution of boundary perturbations on materials
thus deformed. In the present paper, we study such effects in a body with accumulated plastic strains under shock
loading.

Strong discontinuity surfaces in elastoplastic bodies were studied in [1–3]. However in those studies, strains
were considered small and irreversible strain discontinuity surfaces were studied. In the present paper, we focus
on the effect of previous irreversible strains on the conditions of existence and propagation of reversible strain
discontinuity surfaces. Obviously, such formulation is meaningless for small strains, and, hence, in the present
paper, we use the model of an elastoplastic medium with finite strains, both irreversible and reversible.

1. Basic Model Relations. Finite strain theory is based on the method of separation of experimental
total strains into reversible (elastic) and irreversible (plastic) components, which cannot be measured experimentally.
Existing models of large elastoplastic strains [4–9] differ mainly in the method of such separation. More often, these
models use the assumption that any real state of a deformed body corresponds to another unique state called an
unloaded state [4, 6, 9]. In this connection, it becomes necessary to choose [6] an objective derivative that relates
the plastic strain tensor to the irreversible strain rate tensor. In [7, 8], the elastic and plastic strain tensors are
defined by differential relations (transfer equations). Without going into detail, which are described in [7, 8, 10],
we shall indicate the relations necessary for further consideration. In separating total strains into reversible and
irreversible components, we assume that plastic strains do not vary during unloading, and, hence, the components
of this tensor vary similarly to those in rigid-body rotation, i.e., pij = zkip

0
kmzmj . Here zij are the orthogonal

tensor components, which, generally speaking, can be different at each point of the medium and are determined by
the variable elastic strains eij and the strain rate εij . As p0

km, we can adopt values of the components pkm at the
beginning of unloading, which is equivalent to the differential relation
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dpij
dt

= rikpkj − pikrkj , rij = −rij =
vi,j − vj,i

2
+Mij(eij , εij),

(1.1)

vi =
dui
dt

=
∂ui
∂t

+ vjui,j , εij =
vi,j + vj,i

2
,

where ui are the particle displacement vector components, the skew-symmetric tensor Mij determines the nonlinear
effect of elastic deformation during unloading on the variation of the plastic strain tensor components (an explicit
relation for it is given in [7]); the Latin subscript after comma denotes partial differentiation with respect to a
corresponding spatial coordinate (vi,j = ∂vi/∂xj); the summation is performed over repeated subscripts. For the
regions of active loading, according to the laws of thermodynamics, relations (1.1) must be supplemented by the
following equations of variation (transfer) [8]) of the elastic (eij) and plastic (pij) strain tensors:

deij
dt

= εij − εpij −
1
2

(eikvk,j+vk,iekj−rikekj+eikrkj−εpikekj+eikε
p
kj),

(1.2)
dpij
dt

= εpij − ε
p
ikpkj − pikε

p
kj + rikpkj − pikrkj .

From this, for the metric tensor components gij = ak,iak,j (ak are material coordinates of points of the medium)
and Almansi strain tensor dij = 0.5(δij − gij)), we obtain the algebraic representations

gij = (δik − eik)(δkm − 2pkm)(δmj − emj), dij = eij + pij − eikekj/2− eikpkj − pikekj + eikpksesj . (1.3)

For unloading (εpij = 0), the second equality in (1.2) directly leads to (1.1), i.e., invariance of the irreversible
strain tensor pij . Thus, the differential relations (1.2), together with (1.3), can be treated as a definition of the
tensors eij , pij , and εpij . In this case, the second equality in (1.2) represents the objective derivative that relates
the plastic strain tensor pij to the plastic strain rate tensor εpij .

Along with (1.2), a consequence of the laws of thermodynamics is the following analog of the Murnagan
formula known in the nonlinear theory of elasticity:

σij =
ρ

ρ0

∂W

∂eik
(δkj − ekj). (1.4)

Here ρ and ρ0 are the densities of the medium in the current and undeformed states and σij are the components
of the Euler–Cauchy stress tensor. In the derivation of (1.4) in [7], it was assumed that the free-energy density
ψ = ρ−1

0 W is a function of only reversible strains eij and does not depend on the irreversible strains pij . The latter
determine the dissipation mechanism of an elastoplastic medium. The elastic properties of an isotropic medium can
be determined by a standard method using a power series expansion of the elastic potential W = W (I1, I2, I3) in
the state with zero elastic strains:

W = λI2
1/2 + µI2 + lI1I2 +mI3

1 + nI3 + . . . ,
(1.5)

I1 = ejj − ejkekj/2, I2 = eijeji − eijejkeki, I3 = eikeksesi.

The invariants of the reversible strain tensor in (1.5) are chosen such that as plastic strains tend to zero,
relation (1.5) becomes the well-known representations of elasticity nonlinear theory:

W = λJ2
1/2 + µJ2 + lJ1J2 +mJ3

1 + nJ3 + . . . , J1 = dkk, J2 = dijdji, J3 = dijdjkdki,

(1.6)
σij =

ρ

ρ0

∂W

∂dik
(δkj − 2dkj).

Below, plastic flow is considered ideal, and, therefore, we postulate the existence of a fixed loading surface
f(σij , pij) = k and adopt the conditions of the Mises maximum principle, whose consequence for active loading is
the associate plastic flow rule.

2. Relations on a Discontinuity Surface. Let a discontinuity surface of Σ(t) reversible strains propagate
in an elastoplastic medium. The position of the surface at any time is defined by

xi = xi(y1, y2, t). (2.1)

The surface coordinates yβ (β = 1, 2) in (2.1) are assumed to be orthogonal. At each point on the surface
Σ(t), where a single normal with components νi is defined (νiνi = 1), we have νixi,β = 0 [11]. The discontinuities
of the components of the displacement tensor gradient are written as
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[ui,j ] = τνiνj + gαβταxi,βνj = τνiνj + τβxi,βνj = (τνi + γµi)νj ,
(2.2)

τ = [uk,k], γ2 = τβτβ , µi = τβγ−1xi,β , µiµi = 1, µiνi = 0.

Here gαβ are the contravariant components of the surface metric tensor, such that gαβgβγ = δαγ and gβγ = xi,βxi,γ .
Unit vectors with the components νi and µi define the polarization plane of the shock wave Σ(t) at the time
considered. The quantities τ and γ should be called the longitudinal and transverse intensities of the discontinuity
on Σ(t). The discontinuity of the quantity in (2.2) is denoted by square brackets. For definiteness, we assume that
[a] = a+ − a− [a+ and a− are values of a discontinuous quantity on Σ(t), calculated ahead of and directly behind
the surface Σ(t)]. Representation (2.2) implies the following relations for the discontinuities of the total strains dij
and the particle velocities vi:

[dij ] = aijτ + bijγ + cijγ
2,

[vi] = −Gτ(1−G−1vjνj − τ)νi −G(1− τ)γµi −G(τνk + γµk)ui,k,
(2.3)

aij = (1 + τ/2)νiνj − (uk,iνj + uk,jνi)νk/2,

2bij = µiνj + µjνi − (uk,iνj + uk,jνi)µk, 2cij = νiνj .

In (2.3), the plus sign at the quantities calculated ahead of Σ(t) is omitted because below we deal only with such
quantities and discontinuity intensities and G is the speed of propagation of the discontinuity surfaces.

The further calculations are simplified if, following (1.3), we assume that the elastic strains eij are small
although the displacement gradient tensor components ui,j are not small. Then, relations (1.3)–(1.5) lead to

eij = Nijkl(dkl − pkl), σij = R(λekkδij + 2µeij),

R =
√

1− 2pkk − 2(pkk)2 − 2pkmpmk − 4(pkk)3/3 + 4pkkpstpts − 8plkpkmpml/3, (2.4)

NijklKlkst = δisδjt, Klkst = δlkδst − δlkpst − plkδst.

The law of conservation of momentum implies the following dynamic conditions of compatibility of the
discontinuities:

[σij ]νiνj = ρ(vkνk −G)[vi]νj , [σij ]xi,βνj = ρ(vkνk −G)[vi]xi,β . (2.5)

We write (2.5) in a form that does not depend on the surface coordinates introduced. Substituting (2.2)–(2.4)
into (2.5), we obtain the relations

(A− ρG2)τ +Bγ +Dγ2 = 0, [(C − ρG2)γµi + (qijτ + nijγ +mijγ
2)νj + hijγµj ]xi,β = 0, (2.6)

where A = fijaji + ρ(vkνk −G)(Gτ + vsνs −Gui,jνiνj), B = fijbji + ρG(vkνk −G)ui,jµjνi, C = ρ(2G− vkνk)vsνs
− ρGτ(vkνk − G), D = fijcji, qij = 2µRNijklalk − ρGui,j(vkνk − G), nij = 2µRNijklblk, mij = 2µRNijklclk,
hij = ρGui,j(vkνk −G), and fij = RNklij(λδkl + 2µνkνl).

To rewrite the three equations (2.6) (β = 1, 2) so as to eliminate arbitrariness in the choice of surface
coordinates, we multiply the last two equality in (2.6) by the components of the vector µi and the vector orthogonal
to it. Ultimately, we obtain

(A− ρG2)τ +Bγ +Dγ2 = 0,

(C − ρG2)γ + (qijτ + nijγ +mijγ
2)µiνj + hijγµjµi = 0, (2.7)

[(qijτ + nijγ +mijγ
2)νj + hijγµj ]εistνsµt = 0, µiµi = 1, µiνi = 0,

where εist is a unit skew-symmetric tensor. It should be noted that relations (2.7) are also valid if the elastic strains
are not small. In this case, the coefficients A, B, C, and D, which depend on previous strains in the medium
and the surface discontinuity intensities τ and γ, include terms of higher than the first order with respect for the
components of the tensor ui,j . The same is valid for the tensors fij , hij , qij , mij , and nij , which are completely
determined only by the strain ahead of the discontinuity surface. These relations are too cumbersome and are not
given here.
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Thus, in the presence of previous irreversible strains in a medium, even under assumption of smallness
of the subsequent reversible strains, the problem reduces to the nonlinear problem of propagation of boundary
perturbations in an elastoplastic medium. This is due to both the nonlinearity of representation (1.3) of the total
strains dij in terms of the elastic and plastic components and the fundamental difference between the Murnaghan
formula (1.4) for the presence of irreversible strains and formula (1.6) for the case of their absence.

If we assume that the previous strains, the motion ahead of Σ(t), and the geometry of the discontinuity
surfaces are known (i.e., if we set νj), Eqs. (2.7) represent a system of five scalar equations for the six unknowns G,
τ , γ, and µi. Consequently, these parameters of the boundary-value problem are calculated only in the course of
solution of the problem. However, if one of them is considered specified, the condition of solvability of system (2.7)
gives important information on the conditions of existence of shock waves of various types.

3. One-Dimensional Plane Elastic Shock Waves. The main regularities of propagation of strong
discontinuity surfaces have the clearest mechanical meaning in the case of one-dimensional plane waves [12, 13].
Therefore, we restrict ourselves to analysis of the possible solutions of (2.7) in this simplest case. We assume that
irreversible strains were present in an elastoplastic half-space x1 > 0 up to the time t = 0, and at t = 0, the
half-space was unloaded. The accumulated plastic strains p11, p12, and p13 are considered known, and the other
components of the plastic strain tensor are considered zero. The existence of nonzero irreversible strains after
unloading leads to the occurrence of residual stresses and, hence, to nonzero elastic strains. Generally, the latter
can also be determined by the nature of the unloading process, and, therefore, we consider them unknown.

From the time t = 0, let the elastoplastic half-space be shock loaded, so that the displacement vector
components depend on just one spatial coordinate x1 [ui = ui(x1, t)]. We assume that this shock loading does not
lead to new plastic flow and study the manner in which such a boundary perturbation propagates in the medium.
Because strong discontinuity planes can propagate in the medium, we consider their features. In this case, system
(2.7) is simplified and can be written as

Fτ − V [ϕ] = 0, Lητ + S[ϕ] = 0, Tγ(µ2p13 − µ3p12) = 0, (3.1)

where
ϕ = u2

2,1 + u2
3,1, [ϕ] = 2(u2,1µ2 + u3,1µ3)γ − γ2, η = p2

12 + p2
13,

F =
ρ0G

2

1− p11
− (λ+ 2µ)(1− p11)− 4µη

1− 2p11 − 4η
, V =

λ− (λ− 2µ)p11 + 4µη
4(1− p11)(1− 2p11 − 4η)

, L = 2
( ρ0G

2

1− p11
− µ

1− 2p11 − 4η

)
,

T = ρ0G
2 − µ

1− p11 − η
, S =

ρ0G
2

4
− µ(1− 2p11 − 2η)

4(1− p11)(1− 2p11 − 4η)
.

The first two equations in (3.1) form a homogeneous linear equations for τ and [ϕ]. If τ and [ϕ] vanish
simultaneously, then, for γ 6= 0, the last equation in (3.1) implies that T = 0 or G =

√
µ/[ρ0(1− p11 − η)]. On

such a discontinuity surface, (u+
2,1)2 + (u+

3,1)2 = (u−2,1)2 + (u−3,1)2, i.e., on this surface, the intensity of the previous
shear cannot change but the direction of the shear can change. In this case, µ2 and µ3 remain undetermined and
can be calculated only taking into account the effect on the boundary. Such a discontinuity plane will be called a
transverse shock wave (τ = 0) or a circular polarization wave [14]. We note that the last equality in (3.1) cannot
be satisfied by setting γ = 0 because for η 6= 0, this implies that τ = 0.

Let the last equation in (3.1) be satisfied by virtue of the condition

µ2/µ3 = p12/p13. (3.2)

This implies that the possible shock waves are plane polarized and their polarization planes are uniquely determined
by previous irreversible strains. The speeds of propagation of such discontinuity planes are calculated by equating
to zero of the determinant of the homogeneous system of the first two equations: FS + LV η = 0. From this, for
G2, we have two values:

G2 = P ±
√
Q. (3.3)

Here

P =
λ+ 2µ
ρ0

1− 2p11 + p2
11 − 2η

2(1− 2p11 − 4η)
+
µ

ρ0

1− 2p11 − 2η(1 + 2p2
11 + 4η)

2(1− p11)(1− 2p2
11 − 4η)

,

Q = P 2 − (λ+ 2µ)µ
ρ2

0

1− p11

(1− 2p11 − 4η)2
.
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The value of G2 = P +
√
Q corresponds to a quasilongitudinal shock wave. As the plastic strains tend to

zero, this quantity tends to the value of c21 = (λ + 2µ)ρ−1
0 equal to the squared speed of vortex-free elastic waves.

However, not only does the presence of residual distortions and stresses change the speed of the given discontinuity
surface but it also leads to discontinuity of the shear strains on it (γ 6= 0). This discontinuity is the greater, the
higher the level of accumulated irreversible strains. If η = 0 ahead of such a discontinuity plane, the shock wave
becomes longitudinal (γ = 0). In any case, the discontinuity intensities τ and γ are related to one another. If, for
example, τ is known, γ is calculated from relation (3.1). By analogy with the nonlinear theory of elasticity [14, 15],
such a discontinuity surface will be called a quasilongitudinal shock wave. We note that this shock wave is plane
polarized in the presence of previous irreversible strains. Its polarization plane is given by relation (3.2) and does
not depend on the nature of shock action on the medium.

The other plane polarized discontinuity is related to the speed of its propagation G2=P−
√
Q. The polar-

ization plane of such a shock wave is also rigidly determined according to (3.2) by the previous irreversible strains.
On this plane, both τ and γ are different from zero, and unlike in the case of a quasilongitudinal shock wave, one
of the discontinuity intensities can vanish. Only if the plastic strains ahead of the given discontinuity plane tend to
zero does the quantity τ also tend to zero. This discontinuity plane will be called a quasitransverse elastic shock
wave [15]. As the previous plastic strains decrease, the speed of this shock wave tends to the value of c2 = (µρ−1

0 )1/2

equal to the speed of propagation of equivoluminal waves in the linear theory of elasticity.
Generally, for nonplanar discontinuity surfaces, the orientation of the polarization plane of a quasitransverse

shock wave depends not only on previous plastic strains but also on the nature of the shock action. A circular
polarization shock wave is not transverse (τ 6= 0), and the components µi of the unit vector introduced depend on
the previous strains. Unlike in the case considered above, the speed of propagation of such a discontinuity surface
depends not only on previous strains but also on the discontinuity intensities γ or τ .

4. Examples of the Simplest Model Problems. Let us consider a self-similar problem of shock loading
of an elastoplastic half-space in which irreversible strains were accumulated. It is assumed that the distribution of
the previous plastic strains is uniform, p11 = η1 − const, p12 = η2 − const, and the remaining components of the
plastic strain tensor are equal to zero. We note that this is generally valid for constant one-dimensional strains.
Vanishing of p13 is achieved by an appropriate choice of a coordinate system. The stresses on the boundary of the
half-space x1 = 0 is set equal to zero (complete unloading) up to the time t = 0. At x1 > 0, residual stresses are
present. From the moment t = 0, let the boundary x1 = 0 be subjected to constant loading, so that

σ11(0, t) = σ
(0)
11 , σ21(0, t) = σ

(0)
21 , σ31(0, t) = σ

(0)
31 .

It is known that this problem is self-similar for the variable χ = x1(c1t)−1 and variation of parameters of
the stress–strain state can occur only by discontinuities on shock waves or inside propagating simple waves. We
set σ(0)

11 6 0 and σ
(0)
21 > 0. As a result, for positive η2, only shock waves can propagate over the medium. The

leading edge of the perturbations propagating into the elastoplastic half-space is a quasilongitudinal shock wave
propagating at speed

G1 =
√
P +

√
Q

[in calculating P and Q according to (3.3), it is necessary to set η = η2
2 ]. After propagation of this shock wave in

the medium, the stress–strain state changes, so that

[ϕ] = −Lη2
2τ1/S, [u3,1] = 0,

σ11 = σ∗11 +
(λ+ 2µ)Rτ1[(1 + Lη2

2/(2S))(1− η1 − 2η2
2)− Lη2

2/(4S)]
(1− η1)(1− 2η1 − 4η2

2)
, (4.1)

σ21 = σ∗21 + 2µRη2τ1
1 + Lη2

2/(2S)− L(1− 2η1)/(8S)
(1− η1)(1− 2η1 − 4η2

2)
, σ31 = σ∗31.

Here σ∗11, σ∗21, and σ∗31 are the components of the residual stress tensor, which are considered known; in the
calculation of L and S according to (3.3), it is necessary to set η = η2

2 . The value of the longitudinal discontinuity τ1
remains unknown and will be determined from the boundary conditions on the loaded boundary plane.

The calculations showed that in any case, a quasilongitudinal shock is followed by a quasitransverse wave:

G2 =
√
P −

√
Q >

√
µ/[ρ0(1− η1 − η2

2)] = G3. (4.2)
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Inequality (4.2) is of fundamental significance in the formulation of boundary-value problems. After propagation of
the quasitransverse shock wave, the stress state changes:

σ11 = σ∗11 +
(λ+ 2µ)R[U(1− η1 − 2η2

2)− Lη2
2τ1/(4S) + η2γ2]

(1− η1)(1− 2η1 − 4η2
2)

,

σ21 = σ∗21 +
2µR[Uη2 + (γ2 − Lη2τ1/(4S))(1− 2η1)/2]

(1− η1)(1− 2η1 − 4η2
2)

, σ31 = σ∗31, (4.3)

U = (1 + Lη2
2/(2S))τ1 + (4V /F − 2)γ2η2.

In (4.3) it is necessary to take into account that, according to (3.1), the quantities L and S are calculated
for G = G1, and the quantities F and V for G = G2. As follows from (4.3), the stresses behind the quasitransverse
discontinuity plane depend on the two independent parameters τ1 and γ2.

Finally, the quasitransverse shock wave is followed by a circular polarization shock wave propagating at
speed G = G3. Because [ϕ] = 0 on this discontinuity plane, it follows that the value of µ2 is small compared
to µ3. Consequently, the changes of σ11 and σ21 on this wave are small compared to the magnitude of the stress
discontinuity σ31. Therefore, in the region behind the circular polarization wave, the stresses can be calculated
from relations (4.3) and the relation

σ31 = µγ3
(1− 2η1)(1− η1 − 2η2

2)− 2η2
2

(1− η1)(1− η1 − 2η2
2)(1− 2η1 − 4η2

2)
. (4.4)

The parameters τ1, γ2, and γ3 are obtained from the condition on the boundary of the half-space:

τ1 =
(1− η1)(1− 2η1 − 4η2

2)
R

{σ(0)
11 − σ∗11

λ+ 2µ

[(4V
F
− 2
)
η2

2 +
1− 2η1

2

]
− σ

(0)
21 − σ∗21

2µ

[(4V
F
− 2
)

(1− η1 − 2η2
2) + 1

]
η2

}
,

γ2 =
(1−η1)(1−2η1−4η2

2)
R

{
− σ

(0)
11 − σ∗11

λ+ 2µ

(
1 +

Lη2
2

2S
− L

8S
(1− 2η1)

)
η2 (4.5)

+
σ

(0)
21 − σ∗21

2µ

[(
1 +

Lη2
2

2S

)
(1− η1 − 2η2

2)− Lη2
2

4S

]}
,

γ3 =
σ

(0)
31

µ

(1− η1)(1− η1 − η2
2)(1− 2η1 − 4η2

2)
(1− 2η1)(1− η1 − 2η2

2)− 2η2
2

.

Thus, relations (4.1), (4.3), and (4.4) with τ1, γ2, and γ3 calculated according to (4.5), are a solution of the
problem of determining stresses under unsteady deformation of a shock-loaded half-space. In this case, it is only
necessary to specify the residual stress distribution in this space, i.e., σ∗11 and σ∗21 should be known. We note again
that the quantities L and S in (4.5) are calculated from relations (3.1) for G = G1, and quantities F and V are
calculated by the same relation for G = G2. Thus, the presence of accumulated irreversible strains results in a
medium leads to a change of the nature of distribution of subsequent elastic strains over the medium.

Let us consider another unsteady problem of instantaneous unloading of an elastoplastic plane layer
0 6 x1 6 H. We assume that the previous stress state in the layer corresponds to developed plastic flow [11]:

(σ∗11 − σ∗22)2 − 4σ∗12 = 4k2. (4.6)

The final strain state in the layer depends substantially on the history of the active irreversible deformation.
For the purposes of the present work, this is necessary as the initial condition of the problem. We assume that of the
components of the displacement gradient tensor only u2,1 is not equal to zero. Moreover, we set u2,1 = h − const.
In other words, for the strain state, we adopt the condition of pure shear. In nonlinear media, this is possible only
for σ∗11(0) 6= 0. From (1.3) it follows that of the plastic strain tensor components, only p12 = η2 − const is nonzero.
For the elastic strain tensor components in this strained state, we have

e11 =
−h2(1− 2η2

2) + 2η2(h− 2η2)
2(1− 4η2

2)
, e12 =

−h2η2 + h− 2η2

2(1− 4η2
2)

.

Here the constant h is given by equality (4.6) and η2 should be specified.
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At the time t = 0 let the constant load on the plane x1 = 0 be instantaneously eliminated. By virtue of
the chosen initial conditions, the problem becomes self-similar again. We introduce a new dependent variable w(ξ)
using the transformation u2 = c2tw(ξ), where ξ = x1(c2t)−1 and c22 = µρ−1

0 .
The equation of motion implies that

[(1− 2w′η2)/(1− 4η2
2)− ξ2]w′′ = 0. (4.7)

Thus, w′ = const everywhere if the expression enclosed in brackets in (4.7) is not equal to zero. However,
unlike in the previous case, where this expression vanished only for some values ξ, here it can vanish in the interval
[ξ−, ξ+] (simple wave). The value of ξ+ is obtained using initial conditions, according to which u+

2,1 = w′ = h, and
ξ− is obtained using the condition of absence of elastic strains w′ = 2η2:

ξ+ =
√

(1− 2η2h)/(1− 4η2
2), ξ− = 1.

Thus, the unloading does not give rise to a shock wave. Unsteady variation of the stress–strain state results
from the propagation of a simple Riemann wave.

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 02-01-01128).
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